深層学習を32ビットマイコンで実現 STがデモ:embedded world 2018
STMicroelectronicsは、「embedded world 2018」で、32ビットマイコン「STM32」にDNN(ディープニューラルネットワーク)を実装するデモを披露した。
32ビットマイコンにDNNを実装する
STMicroelectronicsは、ドイツ・ニュルンベルクで開催された「embedded world 2018」(2018年2月27日〜3月1日)で、同社の32ビットマイコンシリーズ「STM32」で、DNN(ディープニューラルネットワーク)を駆動するデモを展示した。
具体的には、グラフィカルなソフトウェアコンフィギュレーションツールである「STM32CubeMx.AI」を使う。STM32CubeMx.AIは、DNNに必要な学習アルゴリズムを、任意のSTM32シリーズで動作するように最適化する。
デモでは、「スマートウォッチを身に着けたユーザーの『走る』『歩く』『立っている』といった動作を、加速度センサーなどのデータから判断するディープラーニング機能を、『STM32F7』に実装する」までの工程を示した。STM32F7は、Arm「Cortex-M7」をベースとしたシリーズである。
STM32CubeMx.AIは、ユーザーの動作を判断できるようあらかじめ学習したニューラルネットワークモデルを読み込む。「STM32F7」を使用するマイコンとして選択すると、STM32F7のメモリ容量や処理性能に合わせてDNNを最適化し、それをマッピングする。STM32CubeMx.AIで、最適化したDNNの機能をチェックすることもできる。PC(STM32CubeMx.AIをインストールしたもの)と、STM32F7のボードを接続すると、DNNがSTM32F7に実装される。STM32CubeMx.AIが対応するディープラーニングのフレームワークは、現時点では「Lasagne」「Keras」「Caffe」「ConvNetJS」である。
デモでは、DNNを実装したSTM32F7を搭載したスマートフォンを使って、「走る」「歩く」などの動作を実際に正確に判断できる様子を示した。
STMicroelectronicsでSenior Principal Engineerを務めるDanilo Pau氏は、「われわれは、ディープラーニングをマイコンに実装しようとする時に、3つの課題があると考えた。1つは、マイコンに実装できるようなサイズのコードを記述すること。2つ目はクラウドとマイコンとの相互運用性、3つ目はソフトウェアの最適化だ。STM32CubeMx.AIによって、これらが解決できると見込んでいる」と語り、「AI(人工知能)をエンドノードで実現しやすくなるだろう」と強調した。
STM32CubeMx.AIは、現在は「αバージョン」となっている。2018年の後半に正式にリリースされる予定で、STMicroelectronicsのWebサイトからダウンロードは、まだできない。ただ、Pau氏は「試してみたいと思ったら、いつでも当社に相談してほしい」と述べている。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- 組み込みに特化した商用の深層学習フレームワーク
ディープインサイトは、「Embedded Technology 2017(ET2017)/IoT Technology 2017」で、組み込み機器に特化した商用の深層学習フレームワークを使い、CPUで高速に推論処理を実行するデモを行った。 - コップを倒さず運ぶ、学習するサービスロボット
ルネサス エレクトロニクスは「DevCon Japan 2017」で、組み込み型AI(人工知能)を具現化したデモを多数展示した。そのうちの1つが、家庭用サービスロボットだ。ロボットに搭載したプロセッサにディープニューラルネットワーク(DNN)や強化学習を組み込み、「トレイに載せたコップを倒さずに、でこぼこした道を走行するには、トレイの角度をどう制御すればいいのか」を学習していく様子をデモで展示した。 - Xilinx、エッジ〜クラウドの機械学習に対応
Xilinx(ザイリンクス)は、応答性に優れたビジョンシステムを極めて短い期間で開発することが可能となる「reVISIONスタック」を発表した。エッジからクラウドまで広範な機械学習(マシンラーニング)の処理を行うアクセラレーションプラットフォームを迅速に開発することができる。 - 演算量は従来の10分の1、コンパクトな人工知能
三菱電機は、車載機器や産業ロボットなどに搭載できる「コンパクトな人工知能」を開発した。演算量を従来の10分の1に削減しても、従来と同等の推論結果が得られる機械学習アルゴリズムを開発したことで実現した。 - 陰湿な人工知能 〜「ハズレ」の中から「マシな奴」を選ぶ
「せっかく参加したけど、この合コンはハズレだ」――。いえいえ、結論を急がないでください。「イケてない奴」の中から「マシな奴」を選ぶという、大変興味深い人工知能技術があるのです。今回はその技術を、「グルメな彼氏を姉妹で奪い合う」という泥沼な(?)シチュエーションを設定して解説しましょう。 - 至宝の人工知能 〜問題に寄り添い、最適解をそっと教えてくれる
先人たちにより開発され、磨かれてきた「至宝の最適化アルゴリズム」。本当はこれを軽々しく「AI」とは呼びたくな……い……という気持ちをぐっとこらえ、AI技術として解説します。「試験前の一夜漬け」「雪山遭難」「井戸堀り」の例を使って、説明していきます。繰り返しますが、最適化アルゴリズムを軽々しく「AI」という言葉で片付けたくはないんですよ、本当は。