ペロブスカイト材料、負の屈折率温度係数示す:半導体材料の光学温度補償に成功
京都大学化学研究所の研究グループは、ハロゲン化金属ペロブスカイトが負の屈折率温度係数を示すことを発見した。この材料を用いて、正の依存性を持つ半導体「ZnSe」の光学温度補償が行えることを実証した。
高い品質の試料を比較的容易に作成可能
京都大学化学研究所の金光義彦教授と半田岳人同博士課程学生、田原弘量同助教、阿波連知子同研究員らの研究グループは2019年7月、ハロゲン化金属ペロブスカイトの1つである「CH3NH3PbCl3」が負の屈折率温度係数を示すことを発見したと発表した。この材料を用いて、正の依存性を持つ半導体「ZnSe」の光学温度補償が行えることを実証した。
ハロゲン化金属ペロブスカイトは、材料コストが安価で、溶液法により高品質の結晶が得られることから、柔軟性のある光デバイスの材料として注目されている。既に高い効率の太陽電池や発光ダイオードが開発されている。ところが、ペロブスカイト材料における屈折率の温度依存性はこれまで明らかにされてこなかったという。
そこで研究グループは今回、CH3NH3PbCl3の単結晶を作製し、屈折率の温度依存性を測定した。この結果、温度が上昇するにつれ屈折率が大きく減少する(負の屈折率温度係数を示す)ことが分かった。シリコンなど一般的な半導体材料は、「正の屈折率温度計数」を示すという。
研究グループは、こうした逆の特性を活用した。具体的には、温度の上昇によって生じるZnSeの光路長変化を、CH3NH3PbCl3を用いることで、完全に打ち消すことに成功した。
CH3NH3PbCl3は、可視光から近赤外光まで透過し、溶液法で高品質な試料を簡単に作製することが可能である。このため、光デバイスにおける温度補償などへの応用が期待される。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- ペロブスカイト太陽電池、スズ系で変換効率7%以上に
京都大学と大阪大学の研究グループは、高品質で再現性に優れるスズ系ペロブスカイト半導体膜の成膜法を開発した。光電変換効率が7%を上回るペロブスカイト太陽電池の作製が可能となる。 - インク使わず、北斎の浮世絵をフルカラーで印刷
京都大学のシバニア・イーサン教授と伊藤真陽特定助教らの研究グループは、インクを全く使わずに、葛飾北斎が描いた絵画「神奈川沖浪裏」を、フルカラーで作製した。その大きさはわずか1mmサイズである。 - 電子を閉じ込めて性能が2倍、熱電材料の新理論を実証
京都大学の田中功教授らによる共同研究グループは、電子を狭い空間に閉じ込めることで、熱電材料の性能が約2倍に高まることを実証した。廃熱を効率よく変換し、再資源化できる技術として注目される。 - 産総研、亜鉛空気二次電池用の電解質を開発
産業技術総合研究所(産総研)は、京都大学の協力を得て、充放電による劣化を抑え、亜鉛空気二次電池の寿命を延ばすことができる電解質を開発した。 - 東工大、高効率で高輝度の緑色LED用材料を開発
東京工業大学科学技術創成研究院フロンティア材料研究所の平松秀典准教授らによる研究グループは、室温で緑色発光するペロブスカイト硫化物の新半導体「SrHfS▽▽3▽▽」を開発した。 - 東大、3直列ミニモジュールで変換効率20%超
東京大学の瀬川浩司教授らは、ペロブスカイト太陽電池ミニモジュールで20%を超える変換効率を達成した。