東京工大らが「超分子液晶」を作製 新たな電子デバイスの開発に期待:大面積に塗布する技術も開発
東京工業大学と大阪公立大学は、棒状の有機π電子系分子にアミド結合を導入することで、非水素結合性の「超分子液晶」を作製することに成功した。開発した超分子液晶を大面積に塗布する技術も開発した。
超分子液晶を大面積に塗布する技術も開発
東京工業大学物質理工学院応用化学系の猿渡悠生大学院生と小西玄一准教授、大阪公立大学大学院工学研究科物質化学生命系専攻の竹内雅人准教授らによる研究グループは2024年1月、棒状の有機π電子系分子にアミド結合を導入することで、非水素結合性の「超分子液晶」を作製することに成功したと発表した。開発した超分子液晶を大面積に塗布する技術も開発した。この「超分子液晶」を用いた電子デバイスなど、新たな有機エレクトロニクスの開発につながる可能性があるとする。
研究グループは、π電子系分子に光・電子機能を付与し、シス型とトランス型の異なる構造を持つ3級アミドに着目した。実験では、長さが異なる棒状分子に3級アミドを導入したL字形状の分子を合成。フェニルトラン骨格を有する新規液晶分子の「PTAgroup」が、秩序性の高い液晶(スメクチックB相)であることを確認した。
開発した液晶について構造解析を行った。これにより、固体状態から液体状態でL字型分子が共有結合を介さず超分子的に二量体を形成し、これらは六方晶状に配列していることが分かった。ただ、液晶と結晶ではユニット間の距離や六方晶(長軸)の長さに差があった。そこで、温度可変赤外分光法を用いアミド結合を観察した。この結果、固体状態だとシス型となり、液晶状態ではシス型とトランス型が共存し、シス−トランス異性化が常に起こっていることを確認した。
これらの実験結果と量子化学計算により、L字型分子の二量体が秩序構造(結晶形)を構築。アミド結合はシス−トランス異性化を起こし、系全体に運動性を付与して液晶性を発現することが分かった。
さらに、PTA-groupの物性や機能を調べた。PTA-groupの二量体とその集合体は、消光を起さず高い量子収率(54%)となった。また、PTA-groupの1つはネマチック相を発現し、高い複屈折率(Δn=0.30)が得られた。
Copyright © ITmedia, Inc. All Rights Reserved.
関連記事
- 磁気抵抗メモリの高性能化に向けた新原理を発見
東京工業大学は、非磁性体の「TaSi2」において、フェルミレベル近傍にバンドの縮退点(ベリー位相のモノポール)を配置することにより、高温下でスピンホール効果を増大させる新原理を発見した。SOT(スピン軌道トルク)方式を用いる磁気抵抗メモリについて、高温下での性能改善が期待される。 - 乾電池1本(1.5V)で発光する青色有機ELを開発
東京工業大学や富山大学、静岡大学らの研究グループは、電圧1.5Vの乾電池1本で発光させることができる「青色有機EL」の開発に成功した。開発した有機ELは、青色発光(波長462nm)を印加電圧1.26Vで確認、1.97Vでは発光輝度が100cd/m2に達した。 - n型有機半導体、高移動度で大面積塗布を可能に
東京大学や筑波大学などによる研究グループは、高移動度の電子輸送性(n型)有機半導体を開発した。同時に、塗布法を用い大面積の単結晶製膜にも成功した。 - 東工大、面内分極を用いた不揮発性メモリ開発
東京工業大学は、ナノチャネルボトムコンタクト型2次元強誘電半導体「α-In2Se3(α相セレン化インジウム)」メモリを開発した。マルチレベルセル(MLC)相当の記憶状態を得られる可能性があるという。 - 光の進む方向で光ダイオード効果が2倍以上も変化
大阪公立大学と東京大学の研究グループは、LiNiPO4(リン酸ニッケルリチウム)単結晶を用いた実験で、光の進行方向を反転させることによって、光通信波長帯域における光ダイオード効果が2倍以上も変化することを発見した。外部から磁力を加えると、透過方向を切り替えることもできる。 - 大阪公立大ら、有害物質から有用な化合物を合成
大阪公立大学と大阪大学の共同研究グループは、「パーフルオロアルケン」から、「含窒素ヘテロ環カルベン(NHC)」と呼ばれる、窒素が結合した一重項カルベンを含む環状化合物を、簡便に合成する手法を開発した。