SRF無線プラットフォームVer.2:
ローカル5GやLTEを高速切り替え 製造現場で安定通信
情報通信研究機構(NICT)とNEC、東北大学およびトヨタ自動車東日本は、公衆網(5G/LTE)とローカル5Gによるハイブリッドなネットワークを活用し、移動体との間で安定した無線通信を可能とする「SRF無線プラットフォームVer.2」の実証実験に成功した。(2024/11/20)
マテリアルズインフォマティクス:
光起電力材料や量子材料の探索に最適化したAIモデルを開発
東北大学らは、光起電力材料や量子材料の探索に最適化したAIモデルを開発した。従来の手法よりも最大100万倍の速さで、材料の結晶構造から周波数依存の光学スペクトルを直接出力し、材料の特性を予測できる。(2024/10/29)
研究開発の最前線:
水分解光触媒の水素生成面だけに微細な助触媒を担持する技術を開発
東北大学は、粒径1nm程度の微細な助触媒を、水分解光触媒上で水素ガスを生成する結晶面だけに選択的に担持する技術「結晶面選択的ナノクラスター担持法」を開発した。(2024/10/23)
自動運転車の実用化を支える:
東北大ら、高屈折率で近赤外光を通す新材料を発見
東北大学は日本電気硝子との共同研究により、屈折率が「5」を超えるなど、シリコンに比べ最大で約1.5倍と極めて高く、しかも近赤外光(波長800〜1200nm)を通す透明な新材料を発見した。(2024/10/22)
医療機器ニュース:
点滴ラインの絡まりを防ぎ簡単に長さを調節できるデバイスを開発
東北大学らは、点滴ラインの絡まりを防ぎ、長さ調整を容易にするデバイス「カラフルラインホルダー」を開発した。YKアクロスが全国販売を開始する予定だ。(2024/10/21)
研究開発の最前線:
熱電変換材料を100万倍の効率で開発するシステム構築を推進
茨城大学、東北大学、埼玉大学は、共同で取り組む研究開発プロジェクト「高速スクリーニングによる高効率トポロジカル熱電材料の創成」で、高効率な熱電変換材料を従来比100万倍の効率で開発するシステムの確立を目指す。(2024/10/21)
次世代パワー半導体:
酸化ガリウムウエハーの低コスト量産に向け、東北大が新会社を起業
東北大学は、β型酸化ガリウム(β-Ga2O3)ウエハーの低コスト量産化を目指す同大発のスタートアップFOXを起業したと発表した。同大と同大発スタートアップのC&Aが共同開発した貴金属フリーの単結晶育成技術を用い、シリコンに匹敵する低欠陥のβ-Ga2O3インゴット/基板を、SiCより安価に製造する技術の実用化を目指す。(2024/10/17)
ウェアラブルセンサー向け新材料:
アモルファス CrGT薄膜で巨大な抵抗変化を観測
京都大学と東北大学の研究グループは、ポリイミド基板上に形成したアモルファス Cr2Ge2Te6半導体(CrGT)薄膜が、約6万という極めて大きなゲージ率になることを発見した。これは他の半導体材料に比べ2桁以上も大きい値だという。(2024/10/17)
エッジ機器向けに大容量MRAM搭載:
「CMOS/スピントロニクス融合AI半導体」を開発
東北大学とアイシンは、エッジ機器に適した大容量MRAM搭載の「CMOS/スピントロニクス融合AI半導体」を開発した。システム動作シミュレーションで検証したところ、従来に比べ電力効率は10倍以上、起動時間は10分の1以下となった。(2024/10/16)
消費電力はGPU比で100分の1:
「電流を流すだけで積和演算」 TDKの超省電力AI用デバイス
TDKは、スピントロニクス技術を活用するニューロモーフィック素子として「スピンメモリスタ」を開発した。AIで多用される積和演算を、GPUに比べて100分の1の消費電力で実行できるという。フランスCEAと東北大学との協業により、2030年の量産技術の確立を目指す。TDKは、スピンメモリスタのデモを「CEATEC 2024」で公開する予定だ。(2024/10/3)
研究開発の最前線:
レアアースの使用を抑えた、新たな小型モーター向けボンド磁石を開発
東北大学、三恵技研工業、Future Materialzは、強磁性窒化鉄とネオジム採掘時の副産物であるサマリウムを活用し、レアアースの使用を抑えた小型モーター向けボンド磁石を新たに開発した。(2024/10/1)
LIBリサイクルの水熱有機酸浸出プロセス開発の取り組み(6):
リチウムイオン電池リサイクル技術の現在地
本連載では東北大学大学院 工学研究科附属 超臨界溶媒工学研究センターに属する研究グループが開発を進める「リチウムイオン電池リサイクル技術の水熱有機酸浸出プロセス」を紹介する。最終回となる第6回ではこれまでのまとめとリチウムイオン電池に関する研究論文の特徴を取り上げる。(2024/9/26)
ネオジムボンド磁石と同等の性能:
レアアースフリーの強磁性窒化鉄系ボンド磁石を開発
三恵技研工業、Future Materialz(FMC)および、東北大学は、小型モーターに向けたレアアースフリーの「強磁性窒化鉄系ボンド磁石」を開発した。このボンド磁石を用いた小型モーターは、ネオジムボンド磁石と同等の性能が得られることを実証した。(2024/9/20)
研究開発の最前線:
カーボンナノチューブの原子の並びを制御できる構造制御合成法を開発
東北大学らは、カーボンナノチューブの新しい構造制御合成法を開発した。多種類の元素を混合した触媒を用いて、炭素原子1つ1つの並びであるカイラリティの制御合成に成功し、95%以上の高純度を達成した。(2024/9/19)
研究開発の最前線:
単一タンパク質の温度による微細な構造状態の変化を解析する技術を開発
東北大学らは、単一タンパク質の温度による微細な構造状態の変化を解析する新しい一分子計測技術を開発した。修飾塩基によるDNAやRNAの構造解析にも応用が可能で、幅広い分野への応用が期待される。(2024/9/11)
NiSnFe触媒を用い合成条件を最適化:
原子配列を制御してCNTを合成 東北大
東北大学の加藤俊顕准教授らによる研究グループは、カーボンナノチューブ(CNT)の原子配列である「カイラリティ」を制御して合成する手法を開発した。新たに開発したNiSnFe(ニッケル、スズ、鉄)触媒を用い、95%以上の超高純度で(6,5)カイラリティCNTのみを選択的に合成することに成功した。(2024/9/9)
研究開発の最前線:
ダイヤモンド結晶をシリコン振動子上に固定した微小機械応力センシングを開発
東北大学は、ナノメートルサイズのダイヤモンド結晶をシリコン製振動子上に固定し、その振動子の様子をダイヤモンドの光検出磁気共鳴で計測する技術を開発した。(2024/9/6)
「換気していない部屋では眠くなる」は科学的に正しかった――二酸化炭素と“日中の眠気”の因果関係、東北大が解明
東北大学は二酸化炭素が日中の眠気を引き起こすとする研究結果を発表した。(2024/9/4)
研究開発の最前線:
水系亜鉛イオン電池を高エネルギー化、高出力化できる正極材料を開発
北海道大学と東北大学は、「水系亜鉛イオン電池」の高エネルギー化、高出力化に成功した。スピネル型亜鉛マンガン複酸化物を用い、高出力動作条件でも高いエネルギー密度を発揮できる新しい正極材料を開発した。(2024/9/4)
無人搬送車:
1000台規模の自動搬送ロボットを同時制御するエンジン、量子アニーリングを活用
シャープは東北大学と共同で、量子コンピューティング技術の一種である量子アニーリングを応用し、1000台規模の自動搬送ロボットを同時制御可能な計算エンジンの開発に成功した。(2024/9/3)
研究開発の最前線:
電極の銀イオンが溶出せず、連続使用が可能な長寿命小型酸素センサーを開発
東北大学は、連続使用が可能な長寿命小型酸素センサーの開発に成功した。プルシアンブルーを担持した高結晶性グラフェン被覆多孔性シリカ球を用い、電極の銀イオンが溶出せず、センサー性能の低下を防ぐ。(2024/9/2)
研究開発の最前線:
非対称な分子が有機材料中の無加湿プロトン伝導性を向上する機構を解明
東北大学は、右手と左手のような鏡像関係にある非対称な分子が、有機材料中の無加湿プロトン伝導性を向上する機構を解明した。キラリティの存在が分子運動を介して、伝導度の変化を引き起こすと考えられる。(2024/8/28)
量子状態と機械振動の結合も:
ダイヤモンド単結晶で機械振動を効率的に観測
東北大学は、ナノメートルサイズのダイヤモンド(ナノダイヤモンド)結晶をシリコン振動子上に固定し、光検出磁気共鳴(ODMR)法を用いて、振動子上の応力を観測する技術を開発した。(2024/8/27)
研究開発の最前線:
クロム窒化物が相変化により大きな電気抵抗変化を示すことを発見
東北大学と慶應義塾大学は、クロム窒化物がアモルファス相を介さない相変化により、大きな電気抵抗変化を示すことを発見した。高速ジュール加熱を施し、透過電子顕微鏡により相変化メカニズムの解明を試みた。(2024/8/26)
リチウムイオン電池を置き換える:
北海道大ら、水系亜鉛イオン電池の正極材料を開発
北海道大学と東北大学および、カリフォルニア大学ロサンゼルス校は、亜鉛イオン電池用の正極材料を開発した。これにより、水系亜鉛イオン電池でリチウムイオン電池と同等か、それ以上の高いエネルギー密度と出力密度を実現することが可能となる。(2024/8/23)
銀溶出がない新規の参照極を開発:
性能低下を回避して長寿命を実現 小型酸素センサー
産業技術総合研究所(産総研)は、テクノメディカや東北大学、富士シリシア化学および、筑波大学らと共同で、新規開発の参照極を用い、連続使用が可能な「長寿命小型酸素センサー」を開発した。(2024/8/22)
研究開発の最前線:
微弱な通信用電波で高効率に電力を生み出す実証試験に成功
東北大学は、スピントロニクス技術を活用し、微弱な通信用電波で高効率に電力を作り出す実証に成功した。電池や電源を使わないエッジ端末への応用が期待される。(2024/8/27)
非破壊・非接触で構造物を検査:
サブテラヘルツ波でコンクリ内の鉄筋腐食を評価
芝浦工業大学は、コンステックや東北大学と共同で、サブテラヘルツ波を用いコンクリート内部の鉄筋腐食状態を、非破壊、非接触で評価できる技術を開発した。構造物調査の実施率向上や予防保全型維持管理体系の構築を目指す。(2024/8/14)
相変化メモリの新材料として期待:
東北大ら、クロム窒化物で高速な相変化機能を発見
東北大学と慶應義塾大学、漢陽大学校(韓国)、産業技術総合研究所(産総研)らの研究グループは、クロム窒化物(CrN)が高速な相変化によって電気抵抗が大きく変化することを発見した。CrNは環境に優しく動作電力を低減できることから、相変化メモリ(PCRAM)の情報記録材料として期待されている。(2024/8/9)
Wi-FiやBluetoothの電波を利用:
スピン整流器を開発、微弱な電波でも効率よく発電
東北大学は、シンガポール国立大学や、メッシーナ大学(イタリア)と共同で、ナノスケールの「スピン整流器」を開発し、微弱な無線通信用電波から効率よく電力を生み出す原理実証実験に成功したと発表した。(2024/8/19)
LIBリサイクルの水熱有機酸浸出プロセス開発の取り組み(5):
リチウムイオン電池の完全循環システムは構築できるのか
本連載では東北大学大学院 工学研究科附属 超臨界溶媒工学研究センターに属する研究グループが開発を進める「リチウムイオン電池リサイクル技術の水熱有機酸浸出プロセス」を紹介する。第5回ではリチウムイオン電池の完全循環システム構築に向けた取り組みを取り上げる。(2024/8/8)
研究開発の最前線:
全固体リチウムイオン電池の保護層を最適化する計算フレームワークを開発
東北大学は、全固体リチウムイオン電池の保護層を最適化する計算フレームワークを開発した。充放電時に発生する、固体電解質の分解抑制に用いるコート層の設計に必要な特性や構造を定量的に分析した。(2024/8/7)
研究開発の最前線:
テラヘルツ波の屈折率制御が可能な三次元バルクメタマテリアルを開発
東北大学は、第6世代移動通信システムでの利用が見込まれるテラヘルツ波の屈折率制御が可能な三次元バルクメタマテリアルを開発した。スプリットリング共振器の配置密度を調整することで、屈折率の制御が可能となることが示された。(2024/8/5)
テラヘルツ光学素子の実現目指す:
6G向けに3次元バルクメタマテリアルの屈折率特性を向上
東北大学の研究グループは、2層スプリットリング共振器を3次元的に不規則配置した「3次元バルクメタマテリアル」を開発した。6G(第6世代移動通信)に向けたメタマテリアルとして、屈折率特性をさらに向上させた。(2024/7/26)
研究開発の最前線:
表面処理で2次元、3次元半導体ヘテロ構造で電荷状態の制御に成功
東北大学は、2次元および3次元の半導体ヘテロ構造で、2次元半導体から3次元半導体への電子の移動効率の向上と、2次元半導体の電荷状態の制御に成功した。NTT物性科学基礎研究所と共同で研究していた。(2024/7/23)
研究開発の最前線:
ペロブスカイト型酸化物中の窒素ドーパントの定性、定量分析に成功
東北大学は、ペロブスカイト型酸化物中の窒素ドーパントの定性、定量分析に成功した。材料内部の窒素の導入形態を識別でき、詳細な分析が可能となる。(2024/7/18)
Beyond 5Gで容易にエリアを拡大:
高機能反射板による電波伝搬環境の改善効果を簡便に予測
東北大学は、英国サリー大学やノッティンガム大学と共同で、高機能反射板を用いた電波伝搬環境下における無線通信システムの性能を解析的に表現する手法を開発した。この手法を用いることで、複雑で時間を要する数値シミュレーションやコスト高となる実験を行わなくても、高機能反射板による電波伝搬環境の改善効果を予測できるという。(2024/7/17)
GaAs基板上に単層WS2を積層:
基板の表面処理で2次元半導体の電荷制御に成功
東北大学とNTT物性科学基礎研究所は、表面処理を施した3次元半導体に2次元半導体を積層することで、2次元半導体から3次元半導体への電子移動効率を向上させるとともに、2次元半導体の電荷状態を制御することに成功した。(2024/7/16)
研究開発の最前線:
擬一次元ファンデルワールス物質の大面積な薄膜を製造する新しい手法を開発
東北大学と慶應義塾大学は、ジルコニウムテルライドを用いて、大面積な薄膜を製造する新しい手法を開発した。「擬一次元ファンデルワールス物質」の1つで、半導体デバイスへの応用が注目される。(2024/7/11)
研究開発の最前線:
高価なナノ炭素を用いずスーパーキャパシター並みの容量を得られる電極を開発
東北大学は、高価なナノ炭素を使用せずに、スーパーキャパシター並みの容量を得られるキャパシター用電極を開発した。安全で安価な青色顔料の鉄アザフタロシアニンを活性炭に分子吸着し、電極を作製した。(2024/7/9)
研究開発の最前線:
ナノ秒近辺での原子、分子運動を観測する放射光X線分光型測定技術を開発
東北大学らは、ナノ秒近辺での原子、分子運動を観測する放射光X線分光型測定技術を開発した。次世代2次元X線カメラを使用すれば、動いているものの時間スケールだけでなく、空間的な大きさも同時に測定できる。(2024/7/17)
907F/gACの比静電容量を達成:
安価にキャパシター容量を向上させる電極を開発
東北大学とAZUL Energyらによる研究グループは、鉄アザフタロシアニン(FeAzPc-4N)を活性炭にまぶし、分子レベルで吸着させたキャパシター用電極を開発した。この電極を用いれば、ナノ炭素を用いるスーパーキャパシター並みの容量を安価に実現できるという。(2024/6/27)
スマートファクトリー:
ローカル5Gとキャリア網併用でも安定化する無線通信、トヨタ宮城大衡工場で実証
NICT、NEC、東北大学、トヨタ自動車東日本は、SRF無線プラットフォームを用い、東北地区で初めて、キャリア網(LTE/5G)とローカル5Gによるハイブリッドネットワークを活用した移動体との無線通信安定化実証を行う。(2024/6/18)
研究開発の最前線:
超微細金属酸化物粒子を精密に合成する手法を開発し、特異な電子状態を発見
東北大学と筑波大学は、これまで困難だった5nm以下の超微細な金属酸化物粒子を精密に合成する手法を開発した。放射光軟X線分光での解析により、構造歪が誘起する特異な電子状態が確認された。(2024/6/18)
研究開発の最前線:
海藻によるブルーカーボンの活用に向けたコア技術の委託事業に採択
東北大学が代表機関を務めるコンソーシアムが、福島国際研究教育機構の委託事業「ネガティブエミッションのコア技術の研究開発・実証」に採択された。同大学のほか、鹿島建設と日本エヌ・ユー・エスが参画している。(2024/6/13)
大規模量子コンピュータ向け:
量子ビット制御超伝導回路を提案、原理実証に成功
産業技術総合研究所(産総研)は、横浜国立大学や東北大学、NECと共同で、大規模量子コンピュータに向けた量子ビット制御超伝導回路を提案し、原理実証に成功した。1本のマイクロ波ケーブルで1000個以上の量子ビットを制御することが可能となる。(2024/6/7)
LIBリサイクルの水熱有機酸浸出プロセス開発の取り組み(4):
超臨界流体技術の進展がリチウムイオン電池リサイクル工業化の決め手になる
本連載では東北大学大学院 工学研究科附属 超臨界溶媒工学研究センターに属する研究グループが開発を進める「リチウムイオン電池リサイクル技術の水熱有機酸浸出プロセス」を紹介する。第4回では「JST未来創造事業の実施内容」を取り上げる。(2024/6/13)
研究開発の最前線:
手すき和紙と生分解性プラスチックを組み合わせ、新しい複合材料を開発
東北大学は、手すき和紙と生分解性プラスチックを組み合わせ、新しい複合材料を開発した。強度が向上し、コンポスト中で5週間後には80%以上を生分解できることから、新たな用途の拡大が期待される。(2024/5/30)
研究開発の最前線:
高輝度放射光施設のNanoTerasuを活用する産学共創の研究施設を設立
東北大学は、産学共創の研究施設「NAGASE×東北大学 Delivering next.共創研究所」を設立する。共創パートナーとなる長瀬産業は、3GeV高輝度放射光施設「NanoTerasu(ナノテラス)」を活用する考えだ。(2024/5/27)
量子コンピュータなどの分野に期待:
超伝導の性質を示す岩塩型酸化ニオブを合成、転移温度は最高7.4Kに
東北大学の研究グループは、東京大学と共同で岩塩型NbO(酸化ニオブ)の合成に成功した。得られた岩塩型NbOは超伝導の性質を示し、転移温度は最高7.4Kであった。(2024/5/22)
にわかに地球規模のトピックとなった新型コロナウイルス。健康被害も心配だが、全国規模での臨時休校、マスクやトイレットペーパーの品薄など市民の日常生活への影響も大きくなっている。これに対し企業からの支援策の発表も相次いでいるが、特に今回は子供向けのコンテンツの無料提供の動きが顕著なようだ。一方産業面では、観光や小売、飲食業等が特に大きな影響を受けている。通常の企業運営においても面会や通勤の場がリスク視され、サーモグラフィやWeb会議ツールの活用、テレワークの実現などテクノロジーによるリスク回避策への注目が高まっている。