NIIとスタンフォード大学の研究チームは、新たに開発した量子計算原理を用いて、100ニューロン/5000シナプシス結合のQNNを構成し、「最大カット問題」を解いた。この実験では、100ノード以下の問題に対し、解の全候補(2N=1030)の中から、20%以上の成功確率で出力するなど、高速に厳密解が得られることを確認した。16ノードすべてのグラフ(総数4060)に対する厳密解正解率は、実験値と数値シミュレーションの予測値が、ほぼ一致していることも分かった。
NTTの研究チームは、2048ニューロン/4百万シナプシス結合のQNNを用いて実験した。「ランダムグラフ」「スケールフリーグラフ」および「完全グラフ」の3種のグラフに対し、5ミリ秒の時間内で精度の高い近似解が得られることを確認した。特に、結合数約200万の完全グラフ問題では、焼きなまし法と呼ばれるアルゴリズムを既存のコンピュータで実行した場合に比べて約50倍も速く解けることが分かった。
実験を行ったシステムは、フィードバック制御で位相を安定させた1km長の光ファイバー共振器中に、周期分極反転ニオブ酸リチウム(PPLN:Periodically Poled Lithium Niobate)導波路を挿入した。PPLN導波路には波長768nm、繰り返し周波数1GHzのポンプパルス列を入力する。そうすると、ポンプ波長の2倍に相当する波長1536nmで、位相感応増幅と呼ばれる現象が生じ、ポンプ光の位相に対して「0」または「π」の位相成分だけが増幅されるという。
ポンプ光入力直後に、位相感応増幅によって発生した雑音は種光となる。光ファイバー共振器中にある波長フィルターの透過波長を1536nmとすれば、位相が「0」または「π」の光のみが発振するOPOを実現することができる。光ファイバー共振器の一周時間は約5マイクロ秒で、ポンプパルスの時間間隔は1ナノ秒となるので、約5000個のOPOを一括して発生させることが可能だという。
研究グループは今後、さらなるスピン数の増大を目指す。また、QNNを遠隔で活用するためのインタフェースなどを実装していく計画である。
パッチ式脳波センサー、脳の状態を簡便に測定
多結晶並みの生産性で単結晶シリコン作製に成功
「縮環チオフェン」を簡便かつ短工程で合成
共有結合性有機ナノチューブ、簡便な合成法開発
従来比10億分の1で動く分子センサー、単位はpJ
日本は「子どもの人工知能」で世界と戦えCopyright © ITmedia, Inc. All Rights Reserved.
記事ランキング