界面欠陥が10分の1に低減したことによる具体的な効果としては、600V〜1200VクラスのSiC-MOSFETにおいて、オン抵抗が数分の1になる。つまり、同じ定格電流を数分の1(2分の1、3分の1)のチップサイズで達成できるようになるので、コストが数分の1になる。「SiCパワーデバイスではコストが高いというのが課題の一つなので、これを従来の2分の1、3分の1にできるということだ」(木本氏)
その他、チャネル長を数倍、ゲート酸化膜を数倍にしてもオン抵抗が同等レベルに抑えられるので、信頼性の向上につながる。
新手法は、特殊な装置や高価な原材料は一切要らないので、導入もしやすい。猛毒のNOガスを使わずに済むのも利点だ。「製法の障壁は特にないと考えている。大面積のウエハーにSiを均一に堆積させる必要はあるが、(主流の)6インチSiCウエハーや、あるいは300mmSiCウエハーでも問題ないのではないか。タクトタイムについても、百数十枚のウエハーをバッチ処理できるのであまり心配はしていない」(木本氏)
現時点では、この新手法を実際に採用してSiC-MOSFETを量産する具体的な計画はまだないが、「採用してくれるメーカーがあれば、1〜2年で量産を実現できるのではないか」と木本氏は見ている。
実は、「SiCウエハー上にSiを堆積して酸化する」方法は、以前に米国で考案され、プロセス技術として特許も取得されているという。木本氏は「ただ、その手法では、750℃ではなく900℃で酸化させている。従ってSiCの表面も酸化してしまい、うまくいかなかったようで、同手法は実際の量産に採用されていないようだ」と語る。木本氏らは、今回提案した新しい手法を、構造特許として出願済みだ。
新デバイス構造でSiC MOSFETの信頼性を向上
パワー半導体市場、2030年に4兆円超の規模へ
パワー半導体世界市場、2025年に243億5100万ドルに
SiCはウエハー品質が課題、GaNは統合がトレンドに
バーチャルブースで第4世代SiC-MOSFETなど展示Copyright © ITmedia, Inc. All Rights Reserved.
記事ランキング