今回の性能向上のメカニズムを、模式的に表したものが下の図だ。独自手法の酸化膜生成に加え、界面が極めて平たんなA面/M面を使うことが、性能向上に貢献した。
なお、今回木本氏らはプレーナ型SiC-MOSFETで評価をしたが、これをトレンチ型に応用して製造する場合でも、「大幅なコスト増にはならないだろう」とみる。特殊な装置や高価な原材料も不要で、「工程が数個増えると思うが、それが致命的なコスト増にはならないと考えている」(同氏)
今回、チャネル移動度が6倍(80倍という結果も得られたが、6倍という数字を使う)に向上したので、耐圧600VのSiC-MOSFETでは、チャネル抵抗が既存品の6分の1になる。他の抵抗成分と合わせると、SiC-MOSFET全体でオン抵抗を約半分に削減できるという。同じ定格電流であれば、チップサイズが半分で済むということだ。これによりコストも約6割削減できると木本氏はみている。
SiCウエハーでは大口径化も進められているが、木本氏は8インチSiCウエハーでも今回の効果は有効ではないかとする一方で、ウエハー全面の均一性については課題になるとした。
2020年8月の発表に続き、今回はより実用的なSiC-MOSFETへの適用を見据えた研究結果となった。ただ、木本氏は今回の結果でも「満足はしていない」と述べる。「本来であれば(チャネル移動度は)200や250cm2/Vsといった数字が出るはずなので、これから欠陥の低減などを進め、SiCパワートランジスタのさらなる性能向上を目指す」(木本氏)
「数十年に一度のブレークスルー」が当たり前の世界
新手法の酸化膜形成でSiC-MOSFETの性能が10倍に
量産間近の酸化ガリウムSBD、評価ボードも入手可能
パワー半導体、2030年に4兆471億円規模へ
インフィニオン、300mmウエハー新工場の操業開始
産総研ら、SiCウエハーの高速研磨技術を開発Copyright © ITmedia, Inc. All Rights Reserved.
記事ランキング