情報通信研究機構や住友電気工業などは2015年3月、36コア全てがマルチモード伝搬の新型光ファイバーを開発し、光信号の送受信実験に成功した。
新エネルギー・産業技術総合開発機構(NEDO)と光電子融合基盤技術研究所(PETRA)は、シリコンフォトニクス技術を用いた光トランシーバ(光I/Oコア)を開発した。光I/Oコアは、外形寸法が5mm角のシリコン基板上に必要となる機能が実装されており、1Gビット/秒当たりの消費電力は5mW、1チャネル当たり25Gビット/秒の伝送速度を実現した。
情報通信研究機構は2015年3月、電気通信大学と共同で、量子情報通信ネットワークの基本操作である「量子もつれ交換」を従来の1000倍以上に高速化したと発表した。
NTTとNTTコミュニケーションズは、運用中の100G光伝送システムに対し、400G光信号を増設できることを確認した。4K/8Kの映像配信や、IoTの普及によって増大するトラフィックに対応できる基幹網の実現を目指す。
MHLコンソーシアムは2015年1月、MHLの次世代規格となる「superMHL」の仕様を発表した。
情報通信研究機構(NICT)は2014年12月、電気通信大学と共同で、光ファイバー通信波長帯における量子もつれ光子対の生成効率を30倍以上に高める技術を開発した。
サーコム・ジャパンは2014年10月28日、テレビ用同軸ケーブルを用いてインターネット接続を行う「EoC」(Ethernet over Coaxial cable)を実現する装置を開発し、OEM製品として販売を開始した。
NTTとNEC、富士通の3社は、チャネル当たり毎秒400Gビット級の光伝送技術の実用化にめどをつけた。開発した技術を光送受信装置に実装すれば、既存の光ファイバを活用して、従来に比べて4倍の光伝送を実現することが可能となる。
ロームは、高速の電力線搬送通信規格で組込み機器向けに規格化された「HD-PLC」insideに準拠したベースバンドIC「BU82204MWV」を開発し、サンプル出荷を始めた。M2M(Machine to Machine)やIoT(Internet of Things)、スマートコミュニティを構成する機器などの用途に向ける。