通常のトランジスタ形成プロセスから見ると、550℃という温度条件はかなり厳しいものだ。特に問題になるのが、エクステンション(拡散層)の不純物を活性化するための熱処理(1000℃以上)と、欠陥を低減するための熱処理(900℃前後)である。これらの熱処理はいずれも、トップ側のトランジスタ形成プロセスで実施される。これらの熱処理を省くと、トランジスタ(通常、トップ側はnチャンネルMOS FET)の性能が上がらない。
講演で挙げられた対策は2つ。1つは、歪みシリコンによるnチャンネルMOS FETの性能向上である。もう1つは、レーザーによる熱処理(レーザーアニール)だ。
SOI(Silicon-On-Insulator)ウエハー製品の中には、表面のシリコン層に伸張応力を与えたものがある。「sSOI(strained SOI)」ウエハーと呼ばれる。このsSOIウエハーをトップ側に採用したところ、トップ側nチャンネルMOS FETのトランスコンダクタンスが40〜50%ほど向上した。エクステンションの形成プロセス(熱処理)を省いたにも関わらず、エクステンション有り(高温の熱処理あり)のトランジスタに近いトランスコンダクタンスを得た。通常のSOIウエハーをトップ側に採用してエクステンション形成を省いたトランジスタは、エクステンション有りに比べてトランスコンダクタンスの値が半分に下がっていた。
エクステンション用不純物注入後のレーザーアニールには、波長が308nmのエキシマ(XeCl)レーザー(パルス周期100ナノ秒から200ナノ秒)を使用した。nチャンネルMOS FETとpチャンネルMOS FETのオン/オフ電流特性で高温スパイクアニール(従来の熱処理)とレーザーアニールを比較したところ、電流特性に目立った違いは見られなかった。
(次回に続く)
⇒「福田昭のデバイス通信」連載バックナンバー一覧
Copyright © ITmedia, Inc. All Rights Reserved.