遷移金属酸化物で量子ホール効果の観測に成功:強磁性や超伝導の物性を持つ量子デバイスに道(3/3 ページ)
今回の成果について共同研究グループは、「通常のMBEでは難しかった組成ズレのない遷移金属酸化物の薄膜の作製が、ガスソースMBEによってできるようになった。半導体レーザーを用いた基板加熱により、高品質結晶の作製が可能になった。この2点は、今後の遷移金属酸化物を用いた量子効果デバイス開発に向けたブレークスルーといえる。この成果を『SrTiO3の量子井戸構造での量子ホール効果発現』という実現が最も難しい物性発現へと結び付けたことは、薄膜作製における1つの到達点を示したといえる」とコメント。
その上で、「電子相関が強いd電子系の量子ホール効果の実現は、二次元電子と強磁性や超伝導とが融合した新しい物性の開拓につながる成果であり、エネルギーをほとんど使用しない論理回路やメモリ応用へと発展する可能性がある。ガスソースMBEをチタン酸ストロンチウムだけでなく、他の遷移金属酸化物の薄膜作製に応用することにより、半導体を上回る高品質ヘテロ接合の研究領域をd電子系に拡張することで、新たな量子効果の開拓や酸化物エレクトロニクス分野の発展にも貢献すると期待できる」としている。
- 新磁石を発見、ディラック電子の流れを制御
大阪大学大学院理学研究科の酒井英明氏らは、質量がないディラック電子の流れを制御できる新しい磁石(磁性体)を発見した。ハードディスクのヘッドや磁気抵抗メモリなど、超高速スピントロニクス素子を用いた次世代の磁気デバイスへの応用が期待される。
- グラフェン超えの2次元電子機能を結晶で実現
東京工業大学笹川崇男准教授らは、二セレン化タングステンでグラフェンを超える2次元電子機能を容易に実現できる手法を開発したと発表した。スピンや光を利用するトランジスタ応用につながる新技術だという。
- 低消費電力素子に応用可能なトポロジカル絶縁体薄膜の作製に成功
理化学研究所は2015年4月15日、東北大学と共同でエネルギー損失なく電流が流れるトポロジカル絶縁体の薄膜の作製に成功したと発表した。
- グラフェンにおけるパリティ効果の検証に成功、量子干渉素子作成にも期待
大阪大学大学院の小林研介教授らによる研究チームは、グラフェン(単層グラファイト)中に形成されたpn接合での量子ホール状態の輸送現象にパリティ効果があることを理論的に予測し、実験によって検証することに成功した。また、グラフェンのpn接合における量子ホール状態を用いて、量子干渉素子を実現できる可能性も示唆した。
Copyright © ITmedia, Inc. All Rights Reserved.