メディア

超薄型有機太陽電池の寿命15倍&高効率化を実現理化学研究所(2/2 ページ)

» 2020年03月10日 13時46分 公開
[永山準EE Times Japan]
前のページへ 1|2       

実現につながった2つのポイント

 この性能を実現したポイントは、高エネルギー交換効率と熱安定性を併せ持つ新しい発電層の設計と、ポストアニール処理(電子素子を作製した後に行う加熱処理)による熱安定化技術の2つ。具体的には、以下の通りだ。

 新しく開発した発電層では、ドナー材料として東レが近年新たに開発した熱安定性に優れる半導体ポリマー「PBDTTT-OFT」を利用。従来はこのPBDTTT-OFTとランダムに混合したバルクヘテロ接合構造の発電層を作製するために、アクセプター材料としてフラーレン誘導体を利用していたが、今回代わりに非フラーレン誘導体の「IEICO-4F」を用いたことで、光捕集性と熱安定性により優れる発電層の作製に成功したという。

 これに加え、素子作製後に簡単な熱処理を行うポストアニール処理(今回は作製した有機太陽電池を窒素雰囲気下で150℃のホットプレート上に5分間置くという処理を実施)によって、長期保管安定性の改善も実現したとしている。

高いエネルギー交換効率と長期保管安定性を両立するための設計指針(クリックで拡大) 出典:理化学研究所

 この長期保管安定性改善の原理については、同グループが微小角入射広角X線散乱法やX線光電子分光法などによる物性評価を行った結果、ポストアニール処理を施すことにより、発電層と正孔輸送層の界面での電荷輸送が改善した結果ということが判明。また、他の発電層材料や正孔輸送層を試したところ、ポストアニール処理後にエネルギー変換効率が低下してしまったといい、「今回の素子構成でのみ高いエネルギー変換効率が保持されることが判明した」という。

前のページへ 1|2       

Copyright © ITmedia, Inc. All Rights Reserved.

RSSフィード

公式SNS

All material on this site Copyright © ITmedia, Inc. All Rights Reserved.
This site contains articles under license from AspenCore LLC.