メディア

次世代電池特集

小型のモバイル機器から自動車まで、さまざまな電子機器に搭載されるバッテリー。機器を駆動する要の部分であるだけでなく、安全性にも関わるバッテリーの分野では現在、新たな原理や材料、構造を採用する「次世代電池」の研究開発が加速している。本特集では、バッテリー関連技術の最新情報をお届けする。

Top Story

2023年見込みに比べ約6倍に拡大:

矢野経済研究所は、主要9種類の次世代電池世界市場(メーカー出荷額ベース)を調査し、2035年までの市場規模予測を発表した。これによると、2023年見込みの1兆2333億円に対し、2035年は約6倍の7兆2763億円規模に達する見通しである。

(2024年5月23日)
窓ガラスに設置、街全体を発電所に:

大阪大学産業科学研究所の坂本雅典教授らによる研究グループは、赤外光を高い効率で化学エネルギーに変換する技術を開発、赤外域の太陽光で発電する透明な太陽電池の開発にも成功した。

(2024年5月22日)

新製品

トレックスら3社が開発:

イーアールアイと日本ガイシ、トレックス・セミコンダクターの3社は、それぞれが得意とする技術を組み合わせて、環境発電デモボード「EsBLE」を開発したと発表した。不安定なエネルギーで発電した電力でも、安定したセンシングや測定データの送信が行える。

(2024年5月30日)
「人とくるまのテクノロジー展2024」で展示:

TDKは「人とくるまのテクノロジー展2024」で、ワイヤレス充電規格であるMPP規格とEPP規格の両方に対応した薄型パターンコイルを展示する。1つの充電器でQi準拠の全てのスマートフォンを最大15Wで高速充電できるパターンコイルは「世界で初めて」(TDK)だという。自動車内の充電スポットなどへの利用を想定する。

(2024年5月22日)
独自技術で耐熱性を向上:

日本ガイシは「オートモーティブワールド2024」にて、「半固体電池」として展開するリチウムイオン二次電池やベリリウム銅合金などの車載向け技術を展示した。

(2024年2月2日)
欧州バッテリー規則にも対応:

フランスの小型電池メーカーITEN(アイテン)は、「EdgeTech+ 2023」(2023年11月15〜17日/パシフィコ横浜)に出展し、超小型の全固体電池を展示した。長寿命が特長で、75% DOD(放電震度)で2000サイクル使用できるという。

(2023年11月17日)
33.66%の変換効率を達成:

シャープは、新構造の化合物・シリコン積層型太陽電池モジュールを開発し、33.66%という世界最高の変換効率を達成した。化合物2接合型セルの厚みは、従来の化合物3接合型セルに比べ3分の1以下に薄くできるという。

(2023年11月1日)
伝統工芸とコラボした太陽電池も展示:

太陽誘電は「CEATEC 2023」(2023年10月17〜20日/幕張メッセ)に出展し、チップ型の全固体電池を展示した。独自開発の正極材/負極材の改良によって、容量密度は50mAh/cm3超を実現した。

(2023年10月31日)

研究開発

高性能な燃料電池の開発に期待:

東京工業大学は、これまでとは異なる設計戦略により、中低温(50〜500℃)で高いプロトン伝導度を示す新物質「BaSc0.8W0.2O2.8」を発見した。中低温で高い性能が得られる「プロトンセラミック燃料電池(PCFC)」の開発につながるとみられる。

(2024年5月31日)
従来型に比べ発電性能は10倍以上:

東京大学は、ナノ構造化シリコン薄膜を用いた熱電発電素子を開発、シリコン薄膜を用いた従来型の発電素子に比べ、10倍以上の発電性能を実現した。膨大な数の設置が予想されるセンサー向け自立電源としての活用を見込む。

(2024年5月27日)
レアメタルフリーで高性能化:

北海道大学と東北大学、名古屋工業大学の研究グループは、鉄を主成分とする「リチウムイオン電池正極材料」を開発、高容量で高サイクル寿命を両立させることに成功した。

(2024年5月1日)
「世界最高」のナトリウムイオン伝導度を実現:

大阪公立大学は2024年4月5日、硫化物固体電解質の量産性の高い合成プロセスを開発し、同プロセスを用いて、「世界最高」のナトリウムイオン伝導度を有する硫化物固体電解質の合成に成功したと発表した。

(2024年4月18日)
Liイオン伝導度を向上:

名古屋工業大学は日本ガイシとの共同研究により、フッ化物材料「Li3AlF6」のLi+伝導度を高めることに成功した。この材料を用い、温室プレス成型で作製した全固体リチウムイオン電池は、極めて安定に充放電できることを確認した。

(2024年4月19日)
危険なSiH4ガスを使用せず:

東京工業大学は2024年3月14日、次世代の高性能太陽電池として期待されているシリコンヘテロ接合太陽電池の製造において、太陽電池用の水素化アモルファスシリコンを、既存手法で用いる強い爆発性/毒性を有するSiH4ガスを使用せずに、高速かつ低ダメージで形成する手法を確立したと発表した。

(2024年4月8日)
厚み0.1mmで幅80mm、長さは80m:

富山大学は、富山県立大学や中越合金鋳工との共同研究により、マグネシウム蓄電池に用いる負極材料について、短い時間で極薄かつ広幅、長尺品の作製が可能であることを示した。

(2024年4月8日)
高いイオン伝導度と安全性を備える:

東京理科大学とデンソーの研究グループは、全固体リチウムイオン電池向けに、高いイオン伝導度と安全性を示す「酸化物固体電解質」を発見した。

(2024年4月4日)
東北大学が開発:

東北大学は、マグネシウム蓄電池(RMB)に向けて、岩塩型構造の新たな正極材料を開発した。90℃という低温でマグネシウム(Mg)の挿入や脱離ができることを実証した。

(2024年3月22日)

市場/設備投資

カナダに製造合弁会社を設立へ:

本田技研工業(ホンダ)は、カナダにおける車載バッテリー用セパレーターの現地生産について、旭化成と協業をすることで基本合意した。2024年中にも合弁会社の設立を目指す。

(2024年5月1日)
「再利用」は分かりやすいアイデアだが:

EV(電気自動車)における大きな課題の一つはバッテリーだ。リチウムイオンバッテリーのリサイクル技術が確立されていない中、“中間ステップ”としてリユースも提案されている。だが、リユースは本当に効果的なのだろうか。

(2024年4月24日)
「NEDO Challenge」第2弾:

新エネルギー・産業技術総合開発機構(NEDO)は2024年4月10日、懸賞金型の研究開発コンテストの第2弾の公募を開始した。テーマとなるのはリチウムイオン電池(LiB)。近年課題になっている、ごみ回収におけるLiBの発火や爆発などを防ぐ技術の開発を促進する。

(2024年4月17日)
EV用バッテリー工場の建設を再開:

Ford Motorは、中国のEV向け電池メーカーのCATLと協業し、米国ミシガン州に電池製造のためのギガファクトリーを建設中だ。ただ、米中ハイテク戦争が続く中、この協業は物議をかもしている。

(2023年12月4日)
2035年には3614GWhの予測も:

車載用リチウムイオン電池(LiB)の世界市場は、2025年に容量ベースで約1000GWhとなる。矢野経済研究所が予測した。

(2024年1月9日)
世界標準の技術開発を目指す:

トヨタ自動車と出光興産は2023年10月12日、全固体電池の量産化に必要な硫化物固体電解質の開発やサプライチェーン構築に向けて協業を発表した。全固体電池の実用化は、2027〜2028年を目指している。

(2023年10月19日)
X線顕微鏡で非破壊観測:

東北大学、名古屋大学、ファインセラミックスセンター、高輝度光科学研究センターらの研究グループは2023年8月4日、充放電中の薄膜型全固体電池における化学状態変化を“丸ごと”可視化することに成功したと発表した。

(2023年8月21日)
シリコンアノードを開発:

シリコンアノードを用いた高エネルギー密度バッテリーを手掛ける米国のAmpriusは、2025年に工場の稼働を開始する。数年以内には、同社製バッテリーが空飛ぶクルマに搭載可能になる見込みだという。

(2023年6月13日)

RSSフィード

公式SNS

All material on this site Copyright © ITmedia, Inc. All Rights Reserved.
This site contains articles under license from AspenCore LLC.